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1 Lattices

This document provides a gentle and very short introduction to Lattices. A lattice(L,∧,∨) consists
of a setL and two operators∧ : L × L → L, calledmeet, and∨ : L × L → L, calledjoin, that
satisfy the following for alla, b, c ∈ L:

a ∨ a = a a ∧ a = a (1)

a ∨ b = b ∨ a a ∧ b = b ∧ a (2)

(a ∨ b) ∨ c = a ∨ (b ∨ c) (a ∧ b) ∧ c = a ∧ (b ∧ c) (3)

(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c) (4)

(a ∨ b) ∧ a = a (a ∧ b) ∨ a = a (5)

As a consequence of the definition above we can derive a number of properties. We can define a
“partial order law” by

a ≤ b iff a ∨ b = b (6)

We can easily show thata ≤ b iff a ∧ b = a. Supposea ≤ b thenb = a ∨ b and

a ∧ b = a ∧ (a ∨ b) = (a ∨ a) ∧ (a ∨ b) = a ∨ (a ∧ b) = a (7)

shows thata∧ b = a, which shows one side of theiff. I will leave it to you to show that ifa∧ b = a
then we can show thata ∨ b = b and hence thata ≤ b (the other side of theiff.

It is fairly straight forward to show that ifa ≤ b andb ≤ a thena = b.

The lattice always contains a uniqueleast element (often called0) which is themeetof all the
elements of the lattice:0 =

∧
a∈L a In addition the lattice always contains a uniquemaximal
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element (often call1) which is thejoin of all the elements of the lattice :1 =
∨

a∈L a. Note that
for all a ∈ L we have:

0 ≤ a ≤ 1 (8)

Finally, the lattice contains the notion ofleast upper bound(lub) andgreatest lower bound(glb).
Supposea, b ∈ L. Then there is a (unique) smallest elementu ∈ L such thata ≤ u andb ≤ u. In
fact we can show thatu = a ∨ b. Similarly, l = a ∧ b is the largest element in the lattice such that
l ≤ a andl ≤ b.

Exersize: Show that the set of subsets of the setA = {1, 2, 3, 4, 5, 6} forms a lattice underset
intersectionandset union. Determine the0 and1 of this lattice.

2 Some Examples

2.1 A Well-Ordered Lattice

SupposeL = {U,C, S, TS} such thatU < C < S < TS. If a, b ∈ L we will definemeetandjoin
to be

a ∧ b = min(a, b) (9)

a ∨ b = max(a, b) (10)

From this it is easy to see thatU ∧ TS = U andU ∨ TS = TS. The definitions clearly satisfy
equations1− 5. It is clear why this is called a “well ordered” lattice.

2.2 A Lattice Based on Subsets

SupposeL′ = {a, b, o, g} is a set of 4 elements. SupposeP(L′) is thepower set(set of all subsets
of) L′. Suppose we have for all elementsA, B ∈ P(L′), (A, B ⊆ L′)

A ∧B = A ∩B (11)

A ∨B = A ∪B (12)

where∩ is set intersection and∪ is set union. Then it is easy to show that this forms a lattice.
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2.3 Product Lattice

Suppose we construct the structure(L× L′,∧,∨) where for all(l1, l′1), (l2, l
′
2 ∈ L× L′, we have:

(l1, l
′
1) ∧ (l2, l

′
2) = (l1 ∧ l2, l

′
1 ∩ l′2) (13)

(l1, l
′
1) ∨ (l2, l

′
2) = (l1 ∨ l2, l

′
1 ∪ l′2) (14)

where the operations are done “component wise.”

It is easy to show that if the component operations form a lattice then the “product” will also form
a lattice.

3 Showing equivalence of Lattice Definitions

In this section we show that there are several ways to define a lattice. We described one above,
using thejoin andmeetoperators. Below we show an equivalent definition.

To do this, we first define aposet(partially ordered set). Suppose we have(S,≤) whereS is some
set and≤ satisfies:

∀s ∈ S : s ≤ s (reflexive)
∀s, t ∈ S : s ≤ t andt ≤ s ⇒ s = t (antisymmetry)
∀s, t, u ∈ S : s ≤ t andt ≤ u ⇒ s ≤ u (transitivity)

(15)

Some examples of partial orders include

1. The set of integers (positive and negative) with the natural integer comparison operator≤.

2. The set of positive integers with the comparison operator definedm ≤ n ⇔ m dividesn.1

3. The set of subsets (the power set) of a setS with ⊆ as the comparison operator.

If, for everys, t ∈ S we have eithers ≤ t or t ≤ s then the set istotally ordered.

Suppose there exists an elementa ∈ S such that∀s ∈ S : a ≤ s. If such an elementa exists,
it is unique (i.e. there is only one of them). To show this, we suppose that thereb also satisfies
∀s ∈ S : b ≤ s. Thena ≤ b sincea is a least element, and likewise sinceb is a least element

1Divideshere means division without remainder. It is obvious that the requirements in equations 15 are satisfied.
If we included both the positive and negative integers, then one of the conditions would not be satisfied. You should
figure out which one.
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b ≤ a, but then by antisymmetry,a = b. We will denote such an element, if it exists, as the0 of
the lattice.

In the Example 1 above, there is no0. In Example 2 the number “1” satisfies the0 property, while
in Example 3 the empty setφ satisfies the0 property.

Using exactly dual arguements, we can deduce that if there is a largest elementz such that for all
s ∈ S : s ≤ z, thenz is unique. We call such an element “1”, if it exists. Which of the examples
above have a maximal element and which don’t?2

Suppose(S,≤) is a partially ordered set andX ⊆ S. An “upper bound” of the setX is an element
a ∈ S such that∀x ∈ X : x ≤ a. For an arbitraryposetupper bounds may or may not exist. The
lub (least upper bound) of the setX, written lub(X), is an upper bound ofX that is≤ every other
upper bound ofX. Similarly we can define theglb (greatest lower bound) of a setX.

Using the same argument we used for showing that0 is unique if it exists, we can show the both
theglb(X) and thelub(X) are unique if they exist.

Suppose that(S,≤) is a partially ordered set such that every pair of elements ofS has aglb and a
lub. We will show thatS is then a lattice. For alls, t ∈ S, we define

s ∧ t = glb({s, t}) = glb(s, t) (16)

s ∨ t = lub({s, t}) = lub(s, t) (17)

To help up along, we need a couple of lemmas. First we need to show that fors, t, u ∈ S,
s ∨ t = lub(s, t) ≤ lub(s, t, u). We know thats ≤ lub(s, t, u) andt ≤ lub(s, t, u) solub(s, t, u) is
an upper bound of boths andt. Hence, by definition oflub, we havelub(s, t) ≤ lub(s, t, u).

We also need to show that ifs ≤ t then lub(s, u) ≤ lub(t, u). To show this, note thats ≤ t ≤
lub(t, u) andu ≤ lub(t, u) so lub(t, u) is an upper bound of{s, u}. Hence, by definition oflub,
lub(s, u) ≤ lub(t, u).

We note thatlub(s, t) = lub(t, s). To show associativity oflub need to show that

lub({lub({s, t}), u}) = lub({s, lub({t, u})}).

One way to do this is to show that both sides are equal tolub({s, t, u}). Sincelub({lub({s, t}), u})
is an upper bound of{s, t, u}, we havelub({s, t, u}) ≤ lub({lub({s, t}), u}). Using our first
lemma above, we havelub(s, t) ≤ lub(s, t, u) andu ≤ lub(s, t, u), so lub(s, t, u) is an upper
bound for{lub(s, t), u}, i.e we havelub(lub(s, t), u) ≤ lub(s, t, u).

This completes the proof of associativity.

2Note that having a minimal (0) element does not necessarily guarantee the existence of a maximal element.
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